Exercise 3

A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420 .
(a) Find an expression for the number of bacteria after t hours.
(b) Find the number of bacteria after 3 hours.
(c) Find the rate of growth after 3 hours.
(d) When will the population reach 10,000 ?

Solution

Part (a)

Assume that the rate of population growth is proportional to its size.

$$
\frac{d P}{d t} \propto P
$$

Change this proportionality to an equation by introducing a constant k.

$$
\frac{d P}{d t}=k P
$$

Divide both sides by P.

$$
\frac{1}{P} \frac{d P}{d t}=k
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln P=k
$$

The function that you take a derivative of to get k is $k t+C$, where C is any constant.

$$
\ln P=k t+C
$$

Exponentiate both sides to get P.

$$
\begin{aligned}
P(t) & =e^{k t+C} \\
& =e^{C} e^{k t}
\end{aligned}
$$

Use a new constant P_{0} for e^{C}.

$$
\begin{equation*}
P(t)=P_{0} e^{k t} \tag{1}
\end{equation*}
$$

The bacteria culture initially contains 100 cells.

$$
P(0)=P_{0} e^{k(0)}=100 \quad \rightarrow \quad P_{0}=100
$$

Equation (1) then becomes

$$
P(t)=100 e^{k t} .
$$

Use the fact that the population is 420 after 1 hour to determine k.

$$
P(1)=100 e^{k(1)}=420 \rightarrow e^{k}=4.2 \quad \rightarrow \quad k=\ln 4.2 \approx 1.43508 \text { hour }^{-1}
$$

Therefore, the bacteria population after t hours is

$$
\begin{aligned}
P(t) & =100 e^{(\ln 4.2) t} \\
& =100 e^{\ln (4.2)^{t}} \\
& =100(4.2)^{t}
\end{aligned}
$$

Part (b)

After 3 hours the bacteria population is

$$
P(3)=100(4.2)^{3} \approx 7409 \text { cells. }
$$

Part (c)
After 3 hours the rate of population growth is

$$
\left.\frac{d P}{d t}\right|_{t=3}=k P(3)=(\ln 4.2)\left[100(4.2)^{3}\right] \approx 10632.3 \frac{\mathrm{cells}}{\mathrm{hour}} .
$$

Part (d)

To find when the population will reach 10,000 , set $P(t)=10,000$ and solve the equation for t.

$$
\begin{gathered}
P(t)=10000 \\
100(4.2)^{t}=10000 \\
(4.2)^{t}=100 \\
\ln (4.2)^{t}=\ln 100 \\
t \ln 4.2=\ln 100 \\
t=\frac{\ln 100}{\ln 4.2} \approx 3.20899 \text { hours }
\end{gathered}
$$

